• Imagen 1

Protective effect of bicyclol on tetracycline induced fatty liver in mice.

Toxicology. 2009 May 6; Yu HY, Wang BL, Zhao J, Yao XM, Gu Y, Li YPeroxisome proliferators-activated receptor alpha (PPARalpha) and oxidative stress are two important pathological factors in non-alcoholic fatty liver disease (NAFLD). Tetracycline-induced fatty liver was partly due to the disturbance of mitochondrial fatty acids beta-oxidation regulated by PPARalpha. Bicyclol was found to protect against high fat diet-induced fatty liver through modulating PPARalpha and clearing reactive oxygen species (ROS). The present study was performed to further investigate the effect of bicyclol on tetracycline-induced fatty liver and related mechanism in mice. Bicyclol (75, 150, 300mg/kg) was given orally three times in two consecutive days. Tetracycline (200mg/kg) was injected intraperitoneally 1h after the last administration of bicyclol. Oxidative stress, mitochondrial function, PPARalpha and its target genes were evaluated by biochemical and RT-PCR analysis. The activity of CYP4A was assessed by liquid chromatography/mass spectrometry (LC/MS) method. Bicyclol significantly protected against tetracycline-induced fatty liver by reducing the accumulation of hepatic lipids and elevation of serum aminotransferase. In addition, bicyclol remarkably alleviated the over-production of thiobarbituric acid-reactive substance. The reduced activity of mitochondrial respiratory chain (MRC) complex I&IV and mitochondrial permeability transition (MPT) were also improved by bicyclol. Furthermore, bicyclol inhibited the decrease of PPARalpha expression and its target genes, including long-chain acyl CoA dehydrogenase (LCAD), acetyl CoA oxidase (AOX) and CYP4A at mRNA and enzyme activity level. Bicyclol protected against tetracycline-induced fatty liver mainly through modulating the disturbance of PPARalpha pathway and ameliorating mitochondrial function.

Suppressive effects of swainsonine on C6 glioma cell in vitro and in vivo.

Phytomedicine. 2009 May 7; Sun JY, Yang H, Miao S, Li JP, Wang SW, Zhu MZ, Xie YH, Wang JB, Liu Z, Yang QSwainsonine, an extract from Astragalus membranaceus, is known for its anti-cancer effects and could prevent metastases. In order to investigate the effects and mechanisms of swainsonine in C6 glioma cells, we carry out correlated experiments in vitro and in vivo. After treatment with swainsonine, the effective dose and IC(50) value of swainsonine in the C6 glioma cell were examined using the MTT assay. Cell cycle distribution and apoptotic rates were analyzed using FCM and [Ca(2+)](i) was measured by LSCM. Expressions of p16 and p53 protein were evaluated by immunocytochemical methods. Simultaneously, glioma-bearing rats were administered swainsonine at doses of 2, 4 and 8mg/kg body wt. The inhibition rate was calculated and pathological sections were observed. The results indicated that the growth of C6 glioma cells is inhibited by swainsonine in vitro, with an IC(50) value within 24h of 0.05mug/ml. Increases in swainsonine correlate with S phase percentages of 11.3%, 11.6% and 12.4%, respectively. Moreover, the expression of apoptosis inhibiting p53 and p16 protein decreases gradually. Tumor weight in vivo decreased clearly and HE dyeing of tumor tissue showed gray, its texture was soft, with necrosis and hemorrhagic concentrated inward. Swainsonine could inhibit the proliferation of C6 glioma cells in vitro and the growth of C6 glioma in vivo. The mechanisms of swainsonine-induced apoptosis may relate with the expression of apoptosis-related genes and overloading-[Ca(2+)](i)-induced endoplasmic reticulum stress.

Investigation of the anti-fungal activity of coptisine on Candida albicans growth by microcalorimetry combined with principal component analysis.

J Appl Microbiol. 2009 Apr 22; Kong WJ, Zhao YL, Xiao XH, Li ZL, Jin C, Li HBAbstract Aims: This study investigated the anti-fungal activity of coptisine on Candida albicans growth. Methods and Results: The metabolic power-time curves of Candida albicans growth at 37 degrees C affected by coptisine were measured by microcalorimetry using an LKB-2277 Bioactivity Monitor with stop-flow mode. Then, the diameter of inhibitory zones in the agar layer was observed using agar cup method, and the minimal inhibitory concentration (MIC) of coptisine on Candida albicans growth was determined by serial dilution method. From the principal component analysis on nine quantitative parameters obtained from the power-time curves, we could easily evaluate the anti-fungal activity of coptisine by analysing the change of values of the main two parameters, growth rate constant k and maximum power output in the log phase P(m, log). The results showed that coptisine had strong anti-fungal activity: at a low concentration (45 mug ml(-1)) began to inhibit the growth of Candida albicans and at a high concentration (500 mug ml(-1)) completely inhibited Candida albicans growth. Coptisine gave big inhibitory zones with diameters between 11 and 43 mm within test range, and the MIC of it was 1000 mug ml(-1). Conclusions: Coptisine had strong anti-fungal activity on Candida albicans growth. The method of microcalorimetry applied for the assay of anti-fungal activity of coptisine was quantitative, sensitive and simple. Significance and Impact of the Study: This work will provide useful information for the development of chemical biology policy in the use of anti-microbials in food and drug production.

;