• Imagen 1

Discovery of novel dual functional agent as PPARgamma agonist and 11beta-HSD1 inhibitor for the treatment of diabetes.

Bioorg Med Chem. 2009 Jun 12; Ye YL, Zhou Z, Zou HJ, Shen Y, Xu TF, Tang J, Yin HZ, Chen ML, Leng Y, Shen JHPPARgamma and 11beta-HSD1 are attractive therapeutic targets for type 2 diabetes. However, PPARgamma agonists induce adipogenesis, which causes the side effect of weight gain, whereas 11beta-HSD1 inhibitors prevent adipogenesis and may be beneficial for the treatment of obesity in diabetic patients. For the first time, we designed, synthesized a series of alpha-aryloxy-alpha-methylhydrocinnamic acids as dual functional agents which activate PPARgamma and inhibit 11beta-HSD1 simultaneously. The compound 11e exhibited the most potent inhibitory activity compared to that of the lead compound 2, with PPARgamma (EC(50)=6.76muM) and 11beta-HSD1 (IC(50)=0.76muM) in vitro. Molecular modeling study for compound 11e was also presented. Compound 11e showed excellent efficacy for lowering glucose, triglycerides, body fat, in well established mice and rats models of diabetes and obesity and had a favorable ADME profile.

Adenosine A(1) receptor-mediated transactivation of the EGF receptor produces a neuroprotective effect on cortical neurons in vitro.

Acta Pharmacol Sin. 2009 Jul; 30(7): 889-898Xie KQ, Zhang LM, Cao Y, Zhu J, Feng LYAbstractAim:To understand the mechanism of the transactivation of the epidermal growth factor receptor (EGFR) mediated by the adenosine A(1) receptor (A(1)R).Methods:Primary cultured rat cortical neurons subjected to oxygen-glucose deprivation (OGD) and HEK293/A(1)R cells were treated with the A(1)R-specific agonist N(6)-cyclopentyladenosine (CPA). Phospho-EGFR, Akt, and ERK1/2 were observed by Western blot. An interaction between EGFR and A(1)R was detected using immunoprecipitation and immunocytochemistry.Results:The A(1)R agonist CPA causes protein kinase B (Akt) activation and protects primary cortical neurons from oxygen-glucose deprivation (OGD) insult. A(1)R and EGFR co-localize in the membranes of neurons and form an immunocomplex. A(1)R stimulation induces significant EGFR phosphorylation via a PI3K and Src kinase signaling pathway; this stimulation provides a neuroprotective effect in cortical neurons. CPA leads to sustained phosphorylation of extracellularly regulated kinases 1 and 2 (ERK1/2) in cortical neurons, but only to transient phosphorylation in HEK 293/A(1)R cells. The response to the A(1)R agonist is mediated primarily through EGFR transactivation that is dependent on pertussis toxin (PTX)-sensitive G(i) protein and metalloproteases in HEK 293/A(1)R.Conclusion:A(1)R-mediated EGFR transactivation confers a neuroprotective effect in primary cortical neurons. PI3 kinase and Src kinase play pivotal roles in this response.Acta Pharmacologica Sinica (2009) 30: 889-898; doi: 10.1038/aps.2009.80.

;